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In this paper we shall characterize the filters D such that for every M, Yli~ 1 Mild 
is 2-saturated (where2 > ~ ). The characterization is: D is 2-good, D is 1~ 

o o 
incomplete and S(I)[D is 2-saturated. 

0. Introduction 

In [4] Keisler finds a pure set-theoretic condition on ultrafilters called ).-good- 

ness such that: for every model Mi, YIMi/D is ).-saturated iff D is ).-good, and 

og-incomplete (2 > No), Naturally the question arises: For what filters D is IIi~M~/D 
)`-saturated for every M~. 

Jonsson and Olin 1-13] give a partial answer by proving that i f / =  09 and D is 

the set of subsets of /with  finite complements, then I-li~z M~/D is Nx-saturated. They 

then asked the above mentioned question. Galvin [11] generalizes their results. 

Benda [1] characterized the filters D for which IIiE1 MjD (for every Mi) satisfies 

the following condition:Any type on 1-I~E~MJD consisting of quantifier-free formulas 

(with parameters from 1-I~IMi/D ) which is finitely satisfiable and of cardinality 

<2is  satisfiable in Hi,zMJD. (Our proof also gives the answer for the case of 1-I, 

or Z n formulas. See the abstract in 1-12] in which our results were announced.) 

Pacholski and Ryll-Nardzewski [9] deal with the case where S(I)/D is atomless 

for Nl-saturation. At about the same time that I proved the theorem appearing 

here, Pacholski proved a similar theorem for the case ). = N~ (see [14]). 

We shall use here the following theorem, which is an immediate consequence 

of theorem 3.1 of Feferman and Vaught [10]. 

THEOREM 0.1. For every formula ~b(xl,...,xn) in a language L, there exists 
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a formula ~ (in L1, the language of boolean algebra)and ~o(Xt,...,x~),-.., 

@m(X1,'", Xn) (in L) such that 1-IMi/D ~ O[d] iff S(I)/D ~ ~ [,A~,..., Am] where 

Aj = {i: M, ~ ~j[,d(i)]}. 

We prove here 

TrIEOREM 0.2. For every Mi, ie I ,  Hi~tMi/D is 2-saturated where 2 > N o 

iff D satisfies the following three conditions 

(1) D is a~-incomplete 

(2) S(I)/D is 2-saturated 

(3) D is a 2-good filter. 

REMARK. We also find when Mt/D is 2-universal for every M. 

1. Notations and definitions 

2, # will denote infinite cardinals; m, n, p natural numbers, and j, k, I ordinals. 

Let L be a first-order language. Formulas will be denoted by 0, q~, ~, Z. M, N will 

denote models (L-models if not mentioned otherwise). B will denote a Boolean 

algebra whose operations are Y l U  Y2, Yl N Y2, Y~. If  M is an L-model, then 

L(M) = L and L 1 = L(B). B o is the Boolean algebra with two elements. 

An element of  a model M will be denoted by a, b, c. The set of  elements of  M 

is IMl. We shall write many times a e M instead of  a e ] M  I . d will denote a finite 

sequence of  elements of  M. d ~ M if d = (no, "" ,a , )  and no, '", a~ ~ I M l" M ~ ff['d] 

if M satisfies qS[-d]. 

S(I) will be the set of subsets of I. Clearly with the operations of union, inter- 

section and complementation it is a Boolean algebra. 

D c S(1) is a filter on I if 

1) A1,A2~D~ A 1NA2~D 

2) AI~D, A1 c A z  c I : , - A e ~ D  

D will always denote a filter on I, and i an element of I. 

I f  A, B ~ S(I), let A = B (mod D) if {i: i ~ A ~.  i ~ B} ~ D. This is an equivalence 

relation. So let A/D be the equivalence class of A. Let A/D t_) A1/D = (A t..) A1)/D , 

AID OAI/D = (A nA~)/D, (A/D)~ = ( I -  A)/D. It is easily proved that these 

operations are not dependent on the representatives of the equivalence classes. 

B(D) will be the Boolean algebra with {A/D: A ~ S(I)} as a set of elements (the 

operation has been defined before). (But we shall usually write A instead of A/D.) 

The definitions of reduced power and reduced product are assumed to be 

known (see [-2]). If  a = (ao, ..., a , )  ~ M~/D, then d(i) = (no(i),..., a,(i)). S~().) is 
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the set of all subsets of 2 of power < ~t. f :  So,(2) ~ D is monotonic if for every 

s, t ~ So(2), s c t implies f ( t )  c f ( s ) ,  f is multiplicative if for every s, t~So,(2), 

f (s  u t) = f ( s )o f ( t ) ,  f ~ g if for every s e So(h ), f(s) ~ g (s). D is a /t-good 

filter if for every monotonic f :  So,(2)~D, ). < / t ,  there is g, g o f ,  g: S~(2)~ D, 

and g is multiplicative. 

D is o>incomplete if there exists An ~ D such that f-) An = 0. 
n '< tx~ 

M is ).-saturated if every type {C~k(X, dk): k < ko < 2} 

(dk e M) which is finitely satisfiable in M, is satisfiable in M. M is ).-universal if 

every elementarily equivalent model of power < 2 has an isomorphic elementarily 

submodel of M. 

2. On saturafive filters 

DEFINITION 2.1. D is 2-saturative if for every model Mi, H i ~ Mi/D is 2- 

saturated. 

The main theorem of this paper is: 

THEOREM 2.1. D is h-saturative (h > No) iff it satisfies the following conditions: 

(1) D is h-good 

(2) B(D) is h-saturated 

(3) D is o>incomplete. 

REMARKS. (1) The proof is separated into several lemmas. (2) In the proof of  

the necessity, we assume only that for every M, Mt/D is h-saturated; hence this 

is equivalent to saturativeness. 

PROOF OF NECESSITY 

LEMMA 2.2. I f  D is h-saturative and h > N o, then D is o-incomplete. 

PROOF. Let M be a model ] M I = So,(~o), and let inclusion be one of its re- 

lations. The type (x ~ (n} : n ~ co} clearly is finitely satisfied in Mr~D, and so it 

should be realized by a, a eMr/D. Let Xn = {i:a(i)D (n}}. Clearly each Xn 

belongs to D (by the definition of reduced power), f-)n X~ = {i: (V n ~ og)a(i) ~ {n}} 

= 0 as no element of M is an infinite set. 

LEMMA 2.3. I f  D is h-saturative, then B(D) is ).-saturated. 

PROOF. Let B o be the Boolean algebra of two elements. It is easily seen that 

BXo/D is isomorphic to B(D). By hypothesis B~/D is h-saturated; hence B(D) is 

).-saturated. 
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LEMMA 2.4. I f  D is 2-saturative, then it is 2-good. 

REMARK. This proof appears essentially in Keisler ['4]. 

PROOF. Let It < 2, and f :  So(it) ~ D be monotonic. Then let M = 

<S(So(#)), =, O, ~ >. We define 

ak, k < It, akeM1/D, such that q = {a k ~ x ^ x ~ 0: k < It} 

will be finitely satisfiable, and will be satisfiable iff there exists multiplicative 

g, g c f ,  g: So(it) ~ 19. Clearly this will prove the Lemma. 

Let ak(i) = {t: t eSo(#) ,  k ~ t, i e f ( t ) } .  We prove that q is finitely satisfiable. 

I f  ql is a finite subset of q, then for some s, ql = {ak ~ X ^ X ~ 0: k e s}. So we 

should prove that MX/D ~ (3x)Ak~s(ak D X a x ~ 0) or that 

A = { i : M  ~(3x)  A(ak( i  ) ~ x A x ~ O ) } e D .  
k E s  

Clearly, 

A = { i :  A ak( i )~  0} 
k e s  

= {i: {t: teSo(it) ,  k e s = > k e t ,  i e f ( t ) }  ~ 0} 

= { i : i e f ( s ) }  =f(s )e19 .  

Hence we have proved that q is finitely satisfiable. As [ql = It < 2 and D is 

2-saturative, q is satisfied in M~/D. Let a realize q, and define g: So(It)-~D: 

g(s )= { i : M  ~ A (ak( i )=a( i )  A a ( i ) ~ O ) } .  
k E s  

As M ~ /~(ak(i ) = a(i) A a(i) ~ O)~(3x )  A(ak(i)  = x ^ x ~ 0), 
k c s  k e s  

clearly g ( s ) c  f (s) .  It is also easily seen that g(s)~D and that g(s) is multipli- 

cative. 

So we have proved the Lemma and hence the necessary part of  the proof. 

PROOF OF SUFFICIENCY. We assume now that D satisfies the three conditions 

mentioned in the statement of Theorem 2.1. 

LEMMA 2.5. Let f be a function with two places, whose domain is So(It), 

It < 2, and whose range is included in S(I). Let (As: i<It> be a sequence of  

subsets of  I. Suppose that 

(1) for every s , t ~ S o ( I t ) , ( - ] j ~ s A j n ~ j ~ t ( I - A i ) c f ( s , t ) ( m o d D ) ,  and i f  

s r t ~ O,f(s , t)  = O. 

(2) f(O,O) = I, and for every s , t ,u  r s u t c u, sO3 t = 0 the following 

holds: 
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f ( s , t )  = U { f ( s l ,  tl): s c s I c u, t c t 1 c u,s  i U t i = u} 

Then there exists a sequence (A~ : i < # )  o f  subsets o f  I such that 

(A) for  every i < #, A~ = Ai (mod D) 

(B) f o r  every s, t e So,(#) 

.~ A) ~ ~ (I  - Al )  c f ( s , t )  
J C S  j e t  

REMARK. In this proof we use only the 2-goodness of D. 

PROOF. Define for every t, s e So,(#) 

f i ( s ,  t) = f ( s ,  t) U [ N A j  ~ f-) (I  - A j)] c. 
j e s  j e t  

By hypothesis f i ( s ,  t) e D. For every u e So,(#), let 

g ( u )  = n { A ( s , t ) :  s u t u}. 

Clearly g: So,(#) ~ D and g is monotonic. As D is ).-good, # < 2, there exists 

h: So,(#) -~ D, which is multiplicative and s e S~(#) ~ h(s) c g(s). 

In order to satisfy (A) and (B), it is sufficient that the A~ will satisfy: 

(c 0 if i ~ h({k}) then i e A~ iff i e A k. 

(fl) if i e Ak 1 for every k e s, and i e I - Ak 1 for every k e t then i e l ( s ,  t). 

Let us show the sufficiency. Clearly condition (c 0 implies (A), i.e., that 

Ak = Alk (mod D), because h({k}) e D. It is also clear that (fl) implies (B). 

Now the conditions (e), (fl) are local, i.e., they can be solved separately for 

each i. Let io e I. So it is sufficient to prove that we can define <Ak 1C~ {io} : k < #> 

such that (c 0 and (fl) are satisfied for i = io. We can look at {io e Ak 1 : k < #} as a set 

of propositional variables, 

{ i o e f ( s , t ) :  s, teSo~(#)} u { i o e h ( { k } ) : k  < #} u { i o e A k : k  < p} 

as a set of propositional constants, and (c 0 and (fl) as a set of formulas. 

It is clear that in order to end the proof of the lemma, it is sufficient to prove 

that this set is consistent. By the compactness theorem for propositional calculus, 

it is sufficient to prove that this set is finitely satisfiable. Let T1 be such a finite 

subset, and u be the set of k for which Ak, o r  h({k}) or Ak 1, or f ( t l ,  t2) (where 

k ff t 1 or k E t2) appear in at least one of the formulas in T~. Clearly u~ So,(#). 

Let s = {k: k e u ,  io~h({k} ) ,  i oeAk} ,  t = {k: k e u ,  i o e h ( { k } ) ,  io (SAk}. Then 

s U t c u, and s C~ t = 0, and, as h is multiplicative, io ~ h(s U t). 
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It is known that 

f ( s , t )  = U { f ( s l ,  t l ) : s c s  1 c u ,  t= t~  c u ,  s 1 U t  1 = u} 

It is also known that io e A  k for k e s  and l o c i -  Ak for k e  t. So ior Nk~sAk 

n f"lk ~ , ( I -  Ak) and hence io e f (s ,  t). We can conclude that there exist s 1, t~ 

s = s l c u ,  t c t ~ u ,  s l U t l  = u  such that ioe f ( s l ,  tl). As f ( s ~ , t ~ ) # O ,  
sl r3 t 1 = 0 .  

I f  we make the formulas in {io e A~ : k e sl} true, and make the formulas in 

{io eA2: k eta} false, this will make any formula in T1 true. By this we finish 

the proof of Lemma 2.5. 

LEMMA 2.6. For every/~ < 2, D is (09, #)-regular, i.e., there exist # sets in D, 

such that the intersection of any infinite number of them is void. 

PROOF. As D is o9-incomplete, there exist A,, n < o9, A,,~D, and Nn<o,A, = 0. 

Let us define a function f , f :  So,(#)~D. f ( s )  = n { a n :  n < ]sl}. It is easily 

seen that f is monotonic, and f ( s )  e D. Hence there exists g, g: So(p) ~ D, g multi- 

plicafive, and for every s, g(s) c f ( s ) .  K = {g({k}): k < #} is a set o f #  sets in D. 

We shall prove that the intersection of any infinite number of sets of K is void, 

and by this prove the lemma. Otherwise there exists a k < # which belongs 

to g({kl}, g({k2}),.., where n # m ~ k,, # km. As Nn<,~A~ = 0, there exists 

m such that k r Am, but 

k e g({k~}) c3 g({k2} ) n . - .  c3 g({km} ) = g({k, , . . . ,  km}) ~ Am, 

a contradiction. 

We now proceed to complete the proof of sufficiency. 

Let N = IIi  ~ ~ MilD" 

Suppose q = {q~k(X, dk): k < #} (# < 2) is finitely satisfiable in N (and dk ~ N). 

We should prove that q itself is satisfiable. We first try to translate the problem 

to problems about each i. 

Let, for s ~ S,o(lO, Os(x, d~) = Ak ~ dPk(X, ak). By Theorem 0.1, for each s there 
m s  exist r  ),O<,,t>(x,d<,,D),...,O<,,,,,>(x,d < .. . .  >), (d<~,j> = d,), such that 

for each b e N 

N ~ O,[b,d~] iff B(D) ~ $s[I(O<,A>[b,d<~,~>]),... ] 

where l(O(a,...)) = {i : Mi ~ O(a(i),... )} 

Let R , = { ( s , j > : j = l , . . . , m , } ,  and R = u { R , : s e S o , ( # ) ) .  We define for 

w, v ~ So(R ), 
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f (w,v)  = I((~x) [ A Oh(x,d~)^ /~ --] Oh(X, ti)]). 
h ~ w  h E Y  

It is easy to see that f satisfies condition (2) from Lemma 2.5 (with R instead of/~). 

Now we shall prove that: 

(*) There exist subsets Yr ofI ,  f o r r e R ,  such that: 

(1) for each s~S,o(#), B(D) ~ ~[Y<s,~>, Y<s,2>,"',] 

(2) for each w, v ~ So~(R), B(D) ~ A t  ~ w Y~ n n r ~v Y~ c f(w, v). 

The number of  formulas appearing in (1) and (2) is < I S,~(Iz) I + l S,~(R) x &,(R)I 

= # + / l  2 = # < 2. Hence, (since B(D) is ;t-saturated), in order to prove (*), it is 

sufficient to prove that any finite set of formulas appearing in (1) and (2) is satis- 

fiable. Suppose the set is 

{@,[Y<s,l>,Y<,,2>,...,]:seS}U{ ~ Yr n n Y; = f(w,v): <w,v> e T} 
f E W  r E l ~  

where S and T are finite. Let t = {k: k e s e S} v0 {k: k e s, <s,j> e w to v, <w,v> ~ T}. 

Clearly t also is finite, and t c / l .  By our assumption on q, {@k(X,t~): k e t }  is 

satisfiable, say by b. Hence for every s c  t, lV ~O,(b,d,). For r e R , ,  s ~ t, We 

define Yr = I(Or[b,d~]). For every s e t ,  from N ~ O,(b,d,) it follows that 

B(D) ~ ~q(Y<,,l>, Y<,.2>,'",)- Also, for every w, v c {(s,j>: s c t}, if i e n r~  w Y,~ 

n nr~vYf  then M,~/kr~Or(b(i) ,  dr(i))a /~r~v--]Or(b(i), d,(i)t. So M,~(3x)  

/~r~wOr(x, dr(i)) ^ /~, ~ 7  0r(x, dr(i)), and therefore i ef(w~,v). Hence r l ,  ~ I,, 

n N r ~ Y ~  c f (w ,v ) .  

So the set of  formulas mentioned above is satisfiable, and hence the set of 

formulas from (*) is finitely satisfiable, and, as mentioned above, (by the 2- 

saturation of (B(D)) (*) holds. 

Now we shall prove 

(**) There exist subsets of  I, A, for r~ R such that: 

(1) for every r, B(D)~ A, = Yr (the Y, are from (*) and so 
B(D) ~ r [Y<~,I>,'",]). 

(2) for each w, v e S~(R), N,  ~ ~ yr r N,  ~ Y~ = f(w, v). 

As we have mentioned already, I RI -- < 2, and f satisfy condition (2) of 

Lemma 2.5 (by its definition). Recalling also condition (2) of (*), we see that the 

hypotheses of Lemma 2.5 are satisfied if we take R instead of  # (as the set of 

indices) and Yr instead of Ak (sequence of  known sets). So by Lemma 2.5, (**) 

is true. 

Now it is easily seen that for each i, the set q~ = {Or(x, dr(i)): r e R, i~ At} 
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td {-'] O,(x, d,(i)): r ~ R, i e A,} is finitely satisfiable. (This is clear from (**) and 

the definition of f . )  I f  we define b such that b(i) satisfies q~, then for every r, 

I(O,[b,d~]) = A,,  and so for every s, B(D)~s[I(O(s,l>[b,d~]), . . . ,] .  Hence 

N ~ O~(b, as), and so for every k < p (by taking s = {k}) N ~ (Ok(b, ak). 

But although qi is finitely satisfiable, perhaps it is not satisfiable. Since # < 2, 

D is (co, p) regular. As I R I = P, there are sets X, ,  r e R, in D, the intersection of  any 

infinite number of them is void. Let 

q~ = {0,(x, dr): r ~ R ,  i ~ A ,  (3 Xr} U {--]0,(x,r r ~ R ,  i C'A,, i~X,} .  

Clearly q~ c qi, and by the definition of the X, ,  each q~ is finite (otherwise i will 

belong to infinitely many X/s) .  So q~ is satisfied (in M) by b(i). Then for every 

r ~R  I(O,[b,a,]) c3Xr = A, C3 X , ,  and so B(D) ~I(O,[b,dr] ) = At. Hence 

B(D)~@s[I(O(~.l>[b, d J ) , " , ]  for each s, and so as before, N ~b k [b ,  dk] for 

each k. 

Thus we end the proof  of Theorem 2.1. 

THEOREM 2.7. I f #  < I x], then for  every M, I L(M)[ <- p, M' /D ~s p-universal 

iff  D is (co, p)-regular and B(D) is p-universal. 

REMARK. This generalizes a parallel theorem for ultrapower. 

PROOF. As the proof can be constructed easily from the proof of Theorem 2.1, 

we do not repeat it. 
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